Martingale dimensions for fractals
نویسندگان
چکیده
منابع مشابه
Physical Consequences of Complex Dimensions of Fractals
It has recently been realized that fractals may be characterized by complex dimensions, arising from complex poles of the corresponding zeta function, and we show here that these lead to oscillatory behavior in various physical quantities. We identify the physical origin of these complex poles as the exponentially large degeneracy of the iterated eigenvalues of the Laplacian, and discuss applic...
متن کاملDimensions of Points in Self-similar Fractals
Self-similar fractals arise as the unique attractors of iterated function systems (IFSs) consisting of finitely many contracting similarities satisfying an open set condition. Each point x in such a fractal F arising from an IFS S is naturally regarded as the “outcome” of an infinite coding sequence T (which need not be unique) over the alphabet Σk = {0, . . . , k − 1}, where k is the number of...
متن کاملDetrended fluctuation analysis for fractals and multifractals in higher dimensions.
One-dimensional detrended fluctuation analysis (DFA) and multifractal detrended fluctuation analysis (MFDFA) are widely used in the scaling analysis of fractal and multifractal time series because they are accurate and easy to implement. In this paper we generalize the one-dimensional DFA and MFDFA to higher-dimensional versions. The generalization works well when tested with synthetic surfaces...
متن کاملRandom walk on fractals : numerical studies in two dimensions
Monte Carlo calculations are used to investigate some statistical properties of random walks on fractal structures. Two kinds of lattices are used: the Sierpinski gasket and the infinite percolation cluster, in two dimensions. Among other problems, we study: ( i ) the range RN of the walker (number of distinct visited sites during N steps): average value S, variance and asymptotic distribution;...
متن کاملDimensions of Some Fractals Defined via the Semigroup
We compute the Hausdorff and Minkowski dimension of subsets of the symbolic space Σm = {0, ..., m−1}N that are invariant under multiplication by integers. The results apply to the sets {x ∈ Σm : ∀ k, xkx2k · · ·xnk = 0}, where n ≥ 3. We prove that for such sets, the Hausdorff and Minkowski dimensions typically differ.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 2008
ISSN: 0091-1798
DOI: 10.1214/07-aop349